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Abstract

Heterogeneous Graph Neural Networks (HGNNs) have
drawn increasing attention in recent years and achieved out-
standing performance in many tasks. However, despite their
wide use, there is currently no understanding of their robust-
ness to adversarial attacks. In this work, we first systemati-
cally study the robustness of HGNNs and show that they can
be easily fooled by adding the adversarial edge between the
target node and large-degree node (i.e., hub). Furthermore,
we show two key reasons for such vulnerabilities of HGNNs:
one is perturbation enlargement effect, i.e., HGNNs, failing
to encode transiting probability, will enlarge the effect of the
adversarial hub in comparison of GCNs, and the other is soft
attention mechanism, i.e., such mechanism assigns positive
attention values to obviously unreliable neighbors. Based on
the two facts, we propose a novel robust HGNN framework
RoHe against topology adversarial attacks by equipping an at-
tention purifier, which can prune malicious neighbors based
on topology and feature. Specifically, to eliminate the pertur-
bation enlargement, we introduce the metapath-based transit-
ing probability as the prior criterion of the purifier, restraining
the confidence of malicious neighbors from adversarial hub.
Then the purifier learns to mask out neighbors with low con-
fidence, thus can effectively alleviate the negative effect of
malicious neighbors in the soft attention mechanism. Exten-
sive experiments on different benchmark datasets for multiple
HGNNs are conducted, where the considerable improvement
of HGNNs under adversarial attacks will demonstrate the ef-
fectiveness and generalization ability of our defense frame-
work.

1 Introduction
Many real-world datasets are usually modeled with Hetero-
geneous Graphs (HGs) (Shi et al. 2017), which contain di-
verse types of objects and relations. An example of ACM
citation network characterized by HG is given in Figure
1(a), consisting of three types of objects (Author (A), Pa-
per (P), Subject (S)), and two types of relations (P-A and
P-S). Since HGs contain rich high-order structural informa-
tion, metapath (sequence of relation types between two node
types) is widely used as a basic tool to capture such informa-
tion (Shi et al. 2017), such as P-A-P (papers written by the
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same author) and P-S-P (papers attached to the same sub-
ject). In recent years, with deep learning employed on HGs,
there is a surge of Heterogeneous Graph Neural Networks
(HGNNs) (Wang et al. 2019b; Yun et al. 2019; Fu et al.
2020), which often adopt a hierarchical aggregation (in-
cluding node-level and semantic-level) to capture the infor-
mation from metapath-based neighbors, and have achieved
state-of-the-art performance on a wide range of tasks, e.g.,
node classification and link prediction.

Despite the great success of HGNNs, there is no system-
atic understanding of the adversarial robustness of HGNNs,
i.e., whether the HGNNs can be easily fooled by slight
perturbations of the input topology. This is especially im-
portant for HGNN models since they are widely applied
to many real-world applications, e.g., e-commerce (Zhang
et al. 2019a; Hu et al. 2019) and cyber security (Zhang et al.
2019c; Zhong et al. 2020). So far, most works focus on ad-
versarial vulnerabilities of homogeneous GNNs (Sun et al.
2018), but the robustness for HGNNs is indeed not foresee-
able due to unique metapath-based aggregation.

To answer this question, we introduce the first study of
adversarial robustness of HGNNs through evaluating their
performance on dataset ACM under the same evasion ad-
versarial attacks1, which perturb topology in the test phase,
and the attack results are shown in Figure 1(b). Surprisingly,
compared to the drop of GCN by about 3 points, HGNNs,
i.e., HAN, MAGNN, and GTN, dramatically decrease by
an average of 28 points. Obviously, HGNNs have signifi-
cantly different adversarial robustness from GCNs, which
motivates us to further investigate the differences of archi-
tectures between GCNs and HGNNs.

In the further analysis of attack results, we observe that
the attackers tend to maliciously link the target node to
the large-degree node (i.e., hub). Taking HAN as an exam-
ple, the attacker injects an adversarial edge (p1, a3) in Fig-
ure 1(a), which will lead malicious (red) papers p4 · · · p66
to be the direct neighbors of p1 under metapath PAP. And
even they are assigned small attention values, they can still
dominate the receptive field of HAN in Figure 1(c). We
argue such vulnerabilities of HGNNs can be attributable
to two key reasons: (1) Perturbation enlargement effect.

1Attack algorithm and the implementation details of the com-
pared GCN (Kipf and Welling 2017) can be found in Appendix A.

PRELIMINARY PREPRINT VERSION: DO NOT CITE
The AAAI Digital Library will contain the published

version some time after the conference.



(d) Perturbation enlargement effect
HAN enlarges the influence of 3a

Subject Paper Author

2s

3s

1p
2p
3p
4p

66p

1a

3a
2a

1p

4p

3a
2p

1p

1p 3p

1p

4p

2p

1p

3p

(a) HG and metapath

2a

1a

HAN GCN

(b) Accuracy under attacks

1s

…

1p

1p

2p

3p

4p…

PAP-based 
neighbors

(c) Soft attention values of HAN
P PS

Attention 
values

0.12

0.08

0.09

0.02

0.03

0.29…

0.71
dominate66p

66p 66p

Metapath

AP P

1p

Figure 1: The illustrative example for adversarial attack against HGNNs on ACM dataset. (a) Basic concepts of HG (HG,
metapath). (b) The a robustness evaluation of HGNNs and GCN. (c) A toy example of the soft attention values of HAN under
adversarial edge (p1, a3). (d) The comparison of the influence of adversarial link (p1, a3) to HAN and GCN.

We will prove that HGNNs will rapidly enlarge the ef-
fect of the adversarial hub. While GCNs will not enlarge
it, since compared to HGNNs, as shown in Figure 1(d),
GCNs will not regard the malicious p4 · · · p66 as the direct
neighbors of p1, and thus the malicious two-hop neighbors
p4 · · · p66 can only influence p1 through one-hop neigh-
bor a3. However, HAN directly aggregates all neighbors un-
der PAP with equal weights 1

66 , and thus enlarges the ef-

fect of adversarial (p1, a3) to 63
66 (i.e., the total weights of

malicious p4 · · · p66). (2) Soft attention mechanism. Con-
ventional attention mechanisms assume all neighbors are re-
liable and aggregate them with soft (i.e., positive) values.
This soft attention mechanism may hurt the performance of
GNNs when existing adversarial/noisy/disassortative neigh-
bors (Zhang and Zitnik 2020; Bo et al. 2021). It will cause
more serious damage to HGNN when injecting adversarial
hub as shown in Figure 1 (c).

Once the vulnerabilities of HGNNs are identified, there is
a strong need for further improving the adversarial robust-
ness of HGNNs. Thus, in this paper, we propose a Robust
Heterogeneous GNN framework (RoHe) against topology
adversarial attacks by designing an attention purifier, which
can prune malicious neighbors based on topology and fea-
ture. More specifically, for the problem of perturbation en-
largement, we introduce the metapath-based transiting prob-
ability as the prior criterion of the purifier, restraining the
confidence of malicious neighbors from the adversarial hub.
Then the purifier learns a differentiable mask vector to re-
move the unreliable neighbors in the soft attention mecha-
nism.

The contributions of this work are three folds:

• We introduce the first systematic exploration and assess-
ment of the robustness of HGNNs, and point out that the
HGNNs are highly fragile to adversarial link to the hub,
which can be attributed to the problems of perturbation
enlargement effect and soft attention mechanism.

• Based on the above findings, we propose a novel ro-
bust HGNN framework (RoHe) against adversarial at-
tacks by designing an attention purifier, which can con-
strain the enlargement perturbations by transiting prob-
ability and eliminate the negative impact of malicious
neighbors through mask operation.

• We perform experiments on different benchmark datasets
for multiple HGNNs. The effectiveness and general-
ization ability of our defense framework RoHe are
well demonstrated by the considerable improvement of
HGNNs under adversarial attacks.

2 Preliminaries
Definition 1 Heterogeneous Graph. A heterogeneous
graph, defined as G = (V, E), consists of an object set V
and an edge set E . G is also associated with a node type
mapping function φ : V → A and an edge type mapping
function ψ : E → R. A and R denote the predefined sets
of node types and edge types, where |A| + |R| > 2. For
each type R ∈ R, MR represents the corresponding binary
adjacency matrix.

Definition 2 Metapath. A metapath Φ is defined as a path
in the form of Φ = A1

R1−→ A2
R2−→ · · · Rl−→ Al+1, which

describes a composite relation R = R1 � R2 � · · · � Rl

between node types A1 and Al+1.

Definition 3 Metapath based Neighbors. Given a node v
and a metapath Φ in a heterogeneous graph, the metapath
based neighbors NΦ

v are defined as the set of nodes that
connect with v via metapath Φ.

Metapath-based transiting probability. In this paper, we
consider the metapath-based transiting probability denoted
by PΦ

vu (from node v to neighbor u along metapath Φ =

A1
R1−→ A2

R2−→ · · · Rl−→ Al+1), which can be used to guide
a metapath-based random walk for learning heterogeneous
graph embedding, e.g., metapath2vec (Dong, Chawla, and
Swami 2017). And the matrix PΦ can be calculated by

PΦ = PR1 · · ·PRl , (1)

where PRi = (DRi)−1MRi for i ∈ {1···l}. This shows that
given a metapath Φ, PΦ

vu is defined in terms of two parts: (1)
their connectivity defined by the number of paths between
v and u following Φ; and (2) the degree information of all
nodes along paths.

Heterogeneous graph neural networks. HGNNs often
adopt a hierarchical aggregation: the node-level one aims



to merge the neighbors based on a specific metapath, and
the semantic-level one can fuse the information of different
metapaths. In this paper, we focus on three representative
HGNNs, i.e., HAN (Wang et al. 2019b), MAGNN (Fu et al.
2020) and GTN (Yun et al. 2019). Taking HAN as an exam-
ple, the metapath-based embedding of node v can be aggre-
gated as follows:

zΦv = σ(
∑

u∈NΦ
v

aΦvu · hu), (2)

where aΦvu is the attention value for neighbor u, hu is the
projected feature of u, NΦ

v is the metapath-based neighbors.
To facility analysis, we provide more preliminaries about

the mechanism of (asymmetrically normalized) GCN and
MAGNN/GTN in Appendix B. For clarity, we also formally
provide the simplified structure-based weights of u ∈ NΦ

v
for these models as shown in Table 1, by giving metapath

Φ = A1
R1−→ A2

R2−→ A3 and supposing the features of
nodes are the same.

Adversarial attacks on GNNs. In this paper, we focus on
evasion attack, a typical type of adversarial attack that per-
turbs graph in the test phase and guides the model to mis-
classify the target node v. Specifically, given a homogeneous
graph with adjacency matrix M and node features X, the
goal of an attacker is to find the optimal perturbed adjacency
matrix MΔ:

argmax
MΔ

L(f∗GNN (MΔ,X)v, cv), (3)

where f∗GNN (MΔ,X)v is the prediction of trained GNN
model f∗GNN for node v, cv is the label of v, Δ (named bud-
get) is the maximum number of the perturbed edges, and L
is the classification loss in this paper. The yielding optimal
MΔ will lead to minimum test accuracy.

3 Adversarial Vulnerability Analysis
We perform adversarial attacks on HGNNs and GCN (de-
tails of attack method are in Appendix A), and the results
presented in Figure 1 (b) clearly show that compared to
GCN, HGNNs are highly vulnerable to adversarial attacks,
especially HAN. Here we further analyze the key reasons for
such vulnerabilities.

3.1 Perturbation Enlargement Effect
We discover that HGNNs exist the phenomenon of perturba-
tion enlargement, i.e., HGNNs will enlarge the effect of the
adversarial hub. As shown in Figure 1 (d), the influence of
adversarial hub a3, expected to be less than 1

3 (the inverse

of the p1’s author neighbors), is enlarged to 63
66 for HAN.

Specifically, when the attacker injects an adversarial hub a3
as the direct neighbor of p1, the influence of a3 to p1 should
be proportional to the inverse of the degree of target node p1
(i.e., 1

3 ) from the perspective of network science (i.e., transit-
ing probability). While HGNNs can not satisfy it and enlarge
the total weights to 63

66 for HAN and 63
68 for MAGNN/GTN,

since they skip the intermediate layers (e.g., the layer for
author in PAP), and directly aggregate multi-hop neighbors

p1 · · · p66, failing to encode transiting probability PR1PR2

in structural weight of u.
We also find that the perturbation enlargement effect is

more significant in HAN than MAGNN and GTN. Taking
Figure 1(d) as an example, we can see that p1 is connected to
p1 more densely (by 3 paths) than p4 (by 1 path). Thus the p1
is expected to have larger weights than p4 in transiting prob-
ability. MAGNN and GTN can satisfy it and assign higher
weight to itself p1 ( 3

68 ) than malicious p4 ( 1
68 ), by encod-

ing the total number of path instances (i.e., (DΦ
v )

−1MΦ
vu).

While HAN equally treats all neighbors with same weights
1
66 , thus yields the larger total weights of malicious p4 · · ·p66
( 6366 ) than MAGNN/GTN ( 6368 ).

Table 1: The structural weights of u ∈ NΦ
v and their exam-

ples in HGNNs, TransP (short for Transiting Probability).
Here PRi = (DRi)−1MRi .

Model Weight of u p1 p2/p3 p4-66
TransP (PR1PR2)vu

2
6 + 1

3×64
1
6

1
3×64

HAN 1
|NΦ

v |
1
66

1
66

1
66

MAGNN (DΦ
v )

−1MΦ
vu

3
68

1
68

1
68

GTN (DΦ
v )

−1MΦ
vu

3
68

1
68

1
68

3.2 Soft Attention Mechanism
We argue the soft attention mechanism will especially hurt
the generalization performance on adversarial attacks for
HGNNs. As shown in Figure 1 (c), vast malicious neighbors
p4 · · · p66 can accumulate the smaller but positive attention
values and finally dominate the receptive field of HGNNs,
misleading the classification of p1. Based on this fact, the
power of assigning zero attention values to obviously unre-
liable neighbors is significant for HGNNs.

4 The Proposed Robust Heterogeneous GNN
This section depicts our proposed Robust Heterogeneous
GNNs (RoHe) against topology adversarial attacks. HGNNs
often adopt a hierarchical aggregation (including node-level
and semantic-level), and our RoHe is applied to purify the
node-level aggregation. Figure 2 illustrates the overall ar-
chitecture of RoHe. The node-level attention for metapath-
based neighbors will be equipped by our purifier, which
can constrain the enlargement perturbations by transiting
prior and eliminate the negative impact of malicious neigh-
bors through mask operation. Then the purified attention
will be used for node-level aggregation, yielding the node
embeddings for different metapath, which can be fused in
semantic-level aggregation. Note that here we present our
general framework based on HAN (Wang et al. 2019b) for
simplicity.

4.1 Node-level Aggregation
Here we first detail the node-level attention mechanism and
show that our purifier can eliminate the problems of pertur-
bation enlargement and soft attention mechanism by transit-
ing probability and purification mask.
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Figure 2: The overall framework of RoHe.

Node feature transformation. Since different node types
may have unequal dimensions of feature vectors or lie in dif-
ferent feature spaces, HGNNs usually project the features of
different types of nodes into the common space. Specifically,
for the target node v with typeA ∈ A, we use a type-specific
transformation matrix WA to obtain the projected features
hv as follows:

hv = WAxv. (4)

Feature-based importance. Given a metapath Φ, based
on the hypothesis that the nodes with similar features are
more likely to be important than dissimilar ones, we estimate
the importance eΦvu of neighbors u to target node v under Φ
by dot-product similarity of features:

eΦvu = hv · hu, (5)

In conventional node-level attention mechanism, the
feature-based importance eΦvu will be directly normalized
across NΦ

v with the softmax function, yielding the final soft
attention values aΦvu. We argue aΦvu only considers the fea-
ture information of nodes, while equally treats the multi-
hop neighbors NΦ

v from the perspective of topology, which
will lead to enlarging the effect of adversarial hub neighbor
as proved in Section 3.1. Besides, all neighbors in NΦ

v are
assigned positive values after softmax function. Such soft
attention mechanism has excellent differentiability in back
propagation (Chaudhari et al. 2019), but fails to assign zero
value to obviously malicious neighbors as showed in Sec-
tion 3.2.

To solve above problems, we introduce a differentiable
purifier to mask out the neighbor u ∈ NΦ

v with low confi-
dence score sΦvu. Specifically, we first utilize metapath-based
transiting probability PΦ

vu as the prior of confidence of u to
eliminate perturbation enlargement problem.

Transiting prior. Given metapath Φ = A1
R1−→ A2

R2−→
· · · Rl−→ Al+1, to encode the probability of transiting
along metapath Φ as a prior, we first calculate the transit-
ing probability matrix PRi = (DRi)−1MRi for relation
Ri ∈ {R1, · · ·, Rl}. Each element PRi

vu represents the prob-
ability of transiting from node v to u in relation Ri. And
powering it along Φ will lead to the metapath-based transit-
ing probability PΦ as introduced in Section 2. Then we use
the element PΦ

vu as the prior confidence of neighbor u for

target node v in metapath Φ. We can see that the neighbor u
is expected to obtain a small PΦ

vu for confidence, if u is in-
directly connected to v passing through the hub node, which
can solve the enlargement of adversarial hub as described in
Section 3.1.

Confidence score. Based on the transiting prior PΦ
vu, to

determine the unreliable neighbors, we can calculate the

confidence score vector sΦv ∈ R
|NΦ

v | for neighbors NΦ
v

based on both feature and topology, by incorporating feature
similarity eΦvu and PΦ

vu:

sΦvu = σ(PΦ
vu · eΦvu). (6)

The notation sΦvu, as an element of sΦv , is the confidence
score for neighbor u ∈ NΦ

v , indicating that neighbors
with similar features and high transiting probabilities are re-
garded to be reliable.

For the problem of soft attention, we design a mask oper-
ation, which can mask out neighbors with low confidence in
a differentiable way.

Purification mask. We model the mask operation by con-

structing a mask vector mΦ
v ∈ {1,−∞}|NΦ

v | for all the
neighbors of target node v by

mΦ
vu =

{
0 if u ∈ Top(sΦv , T ),

−∞ otherwise,
(7)

where T is the number of neighbors to be kept, and Top(·)
returns the set of the T most reliable neighbors based on
their confidence scores sΦv . Then the other neighbors will
be removed by setting their mask values as −∞. When a
softmax is applied to a sum of eΦvu and mΦ

vu = −∞, the
node u will be effectively masked out, since the output of
softmax for −∞ is zero.

Thus, we can use mΦ
v to mask out the abundant adversar-

ial/noisy neighbors, yielding purified attention âΦvu via soft-
max function:

âΦvu =
exp(mΦ

vu + eΦvu)∑
i∈NΦ

v
exp(mΦ

vi + eΦvi)
. (8)

In this way, node-level attention is enhanced to encode the
transiting probability of metapath-based neighbors and only
aggregate top-T reliable neighbors, alleviating the problems
of perturbation enlargement and soft attention mechanism.



Aggregation of neighbors. Finally, the final purified
attention âΦvu will be used to aggregate neighbors for
semantic-specific embedding zΦv as

zΦv =
∑

u∈NΦ
v

(âΦvu · hu). (9)

4.2 Semantic-level Aggregation
Since different metapaths capture different semantics of the
HG, HGNNs usually adopt semantic-level attention to cal-
culate the importance of each metapath. Given the metapath
set {Φ0,Φ1, · · ·,ΦP }, after node-level aggregation, we can
obtain a group of semantic-specific node embeddings of v,
denoted as {zΦ0

v , zΦ1
v , · · ·, zΦP

v }. HAN further calculates the
importance of metapath Φ ∈ {Φ1, · · ·,ΦP } by

wΦ =
1

|V|
∑
v∈V

qT · tanh(W · zΦv + b), (10)

where W and b denote the weight matrix and bias of the
MLP, respectively. q is the semantic-level attention vector.
Then HAN uses the softmax function to normalize the im-
portance wΦ to yield the attention value βΦ for Φ. Hence,
the final embedding zv of v can be obtained by semantic-
level aggregation:

zv =
∑

Φ∈{Φ1,···,ΦP }
βΦ · zΦv . (11)

Finally, the overall proposed model can be optimized by
minimizing following loss:

L = −
∑
v∈VL

ln(Wclf · zv,cv ), (12)

where Wclf is the parameter of the classifier, cv is the class
of training node v ∈ VL. The overall process of our proposed
RoHe is summarized in Algorithm 1.

5 Experiments
5.1 Experimental Setup
Datasets. RoHe is evaluated on three widely used HG
datasets: (1) ACM (Wang et al. 2019a) consists of {Paper
(P), Author (A), Subject (S)} and we employ metapath set
{PAP, PSP} for paper classification. (2) DBLP (Fu et al.
2020) consists of {Author (A), Paper (P), Term (T), Confer-
ence (C)} and we use metapath set {APA, APCPA, APTPA}
for author classification. (3) Aminer (Hu, Fang, and Shi
2019) consists of {Paper (P), Author (A), Reference (R)}
and we employ metapaths set {PAP, PRP} for paper classi-
fication. Note that the features of ACM and DBLP are based
on bag-of-words representations, and the features of Aminer
are assigned one-hot id vectors to nodes. Details are in Ap-
pendix C.1.

Setup. (1) HGNNs: We mainly evaluate the effectiveness
of our RoHe on HAN, and we also generalize RoHe to
MAGNN (Fu et al. 2020) and GTN (Yun et al. 2019). (2)
Baselines: Since there are no existing robust HGNNs meth-
ods, we compare with the direct adaptations of following

Algorithm 1: RoHe: Robust heterogeneous HAN

Require: The heterogeneous graph G = (V, E),
The node features {xv, v ∈ V},
The metapath set {Φ0,Φ1, · · ·,ΦP },
The mask threshold T .

Ensure: The final node embeddings {zv, v ∈ V}.
1: Pre-process transiting matrix via Eq. (1);
2: for node type A ∈ A do
3: Type-specific transformation to obtain {hv,∈ V};
4: end for
5: for Φ ∈ {Φ0,Φ1, · · ·,ΦP } do
6: for v ∈ V do
7: Find the metapath-based neighbors NΦ

v
8: for u ∈ NΦ

v do
9: Calculate the feature-based importance evu for

u ∈ NΦ
v via Eq. (5);

10: Calculate confidence score via Eq. (6);
11: Obtain purification mask vector mΦ

v via Eq. (7);
12: Obtain the purified attention âΦvu via Eq. (8);
13: end for
14: Obtain the node embedding zΦv for Φ via Eq. (9);
15: end for
16: end for
17: Calculate the semantic-level attention values {βΦ} for

Φ ∈ {Φ0,Φ1, · · ·,ΦP };
18: Obtain final node embeddings {zv, v ∈ V} by fusing

the embeddings from different metapath via Eq. (11);

strategies: Jaccard (Wu et al. 2019), GGCL (Zhu et al. 2019)
and SimP (Jin et al. 2021), and the variants of our RoHe:
RoHeT (only keeping transiting probability) and RoHeP
(only keeping pruning operation). (3) Generating adver-
sarial attack: We employ FGSM-based attacks (Goodfel-
low, Shlens, and Szegedy 2015) to generate perturbation
edges in experiments. Given a target node, we limit adver-
sarial edges with budget Δ = {1, 2, 3} and edge types as
P-A for ACM/DBLP and P-R for Aminer. We evaluate the
performance with Micro-F1 metric over 500 target nodes,
which are randomly sampled from the test set. More details
about experimental settings are in Appendix C.2 and C.3.

5.2 Defense Effectiveness of RoHe
Here we evaluate the effectiveness of RoHe on HAN (i.e.,
HAN-RoHe) against all baselines, under two scenarios
(Clean and Attack). The overall results are presented in Ta-
ble 2, and results of more metrics are in Appendix C.4. Here
we have the following observations:

(1) Attacker can dramatically decrease the performance
of HAN by about 43% by adding one edge. However, the
proposed HAN-RoHe successfully restores the performance
of GNNs to the level comparable to when there is no at-
tack. For example, with the increase of budget Δ, the per-
formance of HAN-RoHe only drops by about 5% for ACM
and Aminer. The reason is that HAN can greatly benefit from
RoHe by equipping an attention purifier, which filters adver-
sarial neighbors and retains the essential neighbors.

(2) The proposed HAN-RoHe consistently outperforms



Table 2: Results (Micro-F1) of HAN-RoHe. A higher value
indicates better robustness.

Data Model Clean
Attack

Δ =1 Δ =3 Δ =5

ACM

HAN 0.926 0.528 0.330 0.240
Jaccard 0.918 0.892 0.860 0.848
SimP 0.898 0.746 0.476 0.358

GGCL 0.902 0.260 0.084 0.084
HAN-RoHeP 0.924 0.780 0.868 0.870
HAN-RoHeT 0.940 0.900 0.564 0.304
HAN-RoHe 0.920 0.904 0.902 0.882

DBLP

HAN 0.942 0.332 0.096 0.060
Jaccard 0.934 0.816 0.812 0.802
SimP 0.942 0.790 0.670 0.600

GGCL 0.914 0.684 0.464 0.344
HAN-RoHeP 0.862 0.686 0.714 0.702
HAN-RoHeT 0.944 0.760 0.360 0.220
HAN-RoHe 0.942 0.936 0.864 0.808

Aminer

HAN 0.882 0.346 0.134 0.102
GGCL 0.808 0.276 0.056 0.042

HAN-RoHeP 0.840 0.772 0.772 0.774
HAN-RoHeT 0.842 0.788 0.668 0.562
HAN-RoHe 0.838 0.840 0.812 0.802

all defense methods in the Attack scenario. 1) Jaccard and
SimP, pruning unreliable neighbors based on the feature sim-
ilarity, will only alleviate the problem of soft attention mech-
anism and thus have limited improvement. 2) The Gaussian
layer of GGCL also cannot completely absorb the vast ad-
versarial neighbors, failing to defend against such attacks.
3) HAN-RoHeT and HAN-RoHeP only solve one of the
problems of HGNNs respectively, and thus fail to achieve
best adversarial robustness. In summary, the above observa-
tions prove the reasons for the adversarial vulnerabilities of
HGNNs.

(3) HAN-RoHe also successfully defends the non-
attributed HG Aminer. The defense model SimP and Jac-
card, relying on the original feature (i.e., attribute), hence
cannot be directly applied to Aminer. While our RoHe relies
on node embedding rather than original features, thus can
still enhance the robustness of HAN on Aminer.

5.3 Generalization Performance of RoHe

Generalization performance on random noise. We eval-
uate the robustness of the proposed RoHe under random
noise by linking the target node to random nodes. The results
are shown in Figure 3. Results of more metrics and datasets
are in Appendix C.4. We can see HAN-RoHe achieves the
best performance on most metrics and its performance only
slightly drops with the increase of budget Δ, meanwhile,
Jaccard and SimP can also achieve comparable performance
in comparison with RoHe on some metrics. The reason is
that these noise neighbors possibly have different features
with the target node, and can be filtered well by the defense
models based on feature similarity.

Table 3: Results (Micro-F1) of RoHe on different HGNNs.

Data HGNNs Clean
Attack

Δ =1 Δ =3 Δ =5

ACM

HAN 0.926 0.528 0.330 0.240
HAN-RoHe 0.920 0.904 0.902 0.882

MAGNN 0.926 0.711 0.647 0.589
MAGNN-RoHe 0.916 0.901 0.907 0.909

GTN 0.932 0.786 0.466 0.302
GTN-RoHeT 0.932 0.892 0.772 0.656

DBLP

HAN 0.942 0.332 0.096 0.060
HAN-RoHe 0.942 0.936 0.864 0.808

MAGNN 0.920 0.620 0.494 0.416
MAGNN-RoHe 0.898 0.798 0.740 0.682

GTN 0.946 0.564 0.200 0.128
GTN-RoHeT 0.950 0.644 0.334 0.172

(a) ACM (b) DBLP

Figure 3: Results of HAN-RoHe under random noise.

Generalization performance on different HGNNs. To
demonstrate that our proposed defense framework is generic
to other HGNNs, we generalize RoHe to MAGNN and
GTN. The results are presented in Table 3, and results of
more metrics are in Appendix C.4. We first observe that
the performance of all HGNNs dramatically drops under
adversarial attacks, which demonstrates their common lim-
itations. And RoHe can significantly improve the robust-
ness of diverse HGNNs, especially for HAN and MAGNN.
The reason is that the memory-consuming GTN can only
be equipped by variant RoHeT, yielding limited improve-
ment. Additionally, GTN and MAGNN show better robust-
ness than HAN, since they can better encode structural in-
formation as explained in Section 3.1. We also find that all
HGNNs are more vulnerable on DBLP than ACM, since the
perturbations on P-A can be relieved by metapath PSP in
ACM, which can be shown in Figure 4. But all metapaths
in DBLP (APA, APCPA and APTPA) contain the perturbed
relation type P-A, leading to less robustness.

5.4 Robustness of Aggregations
Analysis of node-level aggregation. To verify whether
RoHe can learn robust node-level attention values, here we
take a paper node P3143 about “Wireless Communication”
in ACM as an example. For clean data (Clean), the P3143 is
connected to 6 neighbors with PAP metapath. For perturbed
data (Attack), the attacker just injects one perturbation edge
by linking P3143 with author “Jiawei Han” who published
63 papers mainly about “Data Mining”. And the node-level
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Figure 5: Analysis (Micro-F1) of parameter T .

attention values are shown in Figure 4 (a). Obviously, under
attack, the original soft attention mechanism of HAN has to
aggregate the 63 adversarial neighbors with positive values,
leading to the distortion of P3143 embedding. While RoHe
successfully filters these perturbations and assigns high con-
fidence scores for true neighbors.

Analysis of semantic-level aggregation. To evaluate
whether the rich semantics conveyed by metapaths can en-
hance the adversarial robustness of HGNNs by semantic-
level aggregation, as shown in Figure 4 (b), we report the
performance of different metapath sets in ACM dataset un-
der Clean and Attack, where the type of adversarial edges
are constrained to P-A. Obviously, the HAN under full meta-
paths achieves better robustness, since the perturbations on
P-A can be relieved by the information within P-S for ACM.

5.5 Parameter Study
We analyze hyper-parameters T which is the number of
neighbors to be kept in purifier of HAN-RoHe, under sce-
narios of Clean and Attack with Δ = {1, 3}. Here, we
take metapaths APA and APCPA in DBLP dataset as ex-
amples. Figure 5 demonstrates how performance responds
when threshold T increases. There exists an optimal T that
delivers the best performance. When T is small, RoHe can
only make use of little relevant neighbor information, which
leads to inferior performance. When T increases, the puri-
fied receptive field involves more noise, leading to a higher
chance of incorporating harmful neighbors, which nega-

tively impacts the classification performance.

6 Related Work
Heterogeneous graph neural networks. Recently,
HGNNs showed outstanding performance in various tasks.
Roughly speaking, HGNNs fell into two categories: (1) Di-
rectly aggregating metapath-based neighbors. HAN (Wang
et al. 2019b) proposed directly aggregated metapath-based
neighbors with node-level attention. Then MAGNN (Fu
et al. 2020) extended HAN by considering the intermediate
nodes along metapath. GTN (Yun et al. 2019) further
automatically identified the useful metapaths in the process
of learning node embeddings. (2) Indirectly aggregating
multi-hop neighbors. HGT (Hu et al. 2020) and R-GCN
(Schlichtkrull et al. 2018) indirectly incorporated long-
range neighbors through message passing across layers.
Here we focus on the former type, which is widely used
in many safety-related tasks (Hu et al. 2019; Zhong et al.
2020; Zhang et al. 2019c).

Adversarial robust on graphs. Recently, a magnitude of
adversarial attacks were introduced for homogeneous graphs
(Zügner, Akbarnejad, and Günnemann 2018; Li et al. 2020;
Ma, Ding, and Mei 2020; Sun et al. 2018), pointing out their
sensitivity regarding such attacks. However, there are few
existing investigations on the adversarial attacks for HGs
(Hou et al. 2019; Pezeshkpour, Tian, and Singh 2019; Zhang
et al. 2019b), and they all focused on non-GNN based meth-
ods (e.g., metapath2vec (Hou et al. 2019)). This paper sheds
the first light on this important problem. On the other side,
these adversarial attacks works also triggered the research
on adversarial defenses on GNNs (Wu et al. 2019; Jin et al.
2020). With a unique aggregation mechanism, HGNNs show
different adversarial vulnerabilities from GCNs and need ad-
ditional specially designed defense solutions.

7 Conclusion
In this paper, we introduce the first study on the adversar-
ial robustness of HGNNs. Our extensive experiments show
that HGNNs are highly fragile to topology adversarial at-
tacks in comparison with GCNs, which can be attributed to
the facts of perturbation enlargement and soft attention val-
ues. To address them, we propose an effective robust HGNN
framework RoHe by equipping an attention purifier, which
can prune unreliable neighbors based on topology and fea-
ture, alleviating the above vulnerabilities of HGNNs. Exper-
iments on various datasets and multiple HGNNs show the
effectiveness of RoHe. In future work, we will explore how
to make full use of multiple aspects of information based on
metapath to further improve robustness.
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